Stationary Points and Modelling Questions (52 Marks)

Q1.

The curve with equation

$$
y=x^{2}-32 \sqrt{ }(x)+20, \quad x>0
$$

has a stationary point P.
Use calculus
(a) to find the coordinates of P,
(b) to determine the nature of the stationary point P.

Q2.

The curve C has equation $y=12 \sqrt{ }(x)-x^{\frac{3}{2}}-10, \quad x>0$
(a) Use calculus to find the coordinates of the turning point on C.
(b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(c) State the nature of the turning point.

Q3.

The volume $V \mathrm{~cm}^{3}$ of a box, of height $x \mathrm{~cm}$, is given by

$$
V=4 x(5-x)^{2}, \quad 0<x<5
$$

(a) Find $\frac{\mathrm{d} V}{\mathrm{dx}}$.
(b) Hence find the maximum volume of the box.
(c) Use calculus to justify that the volume that you found in part (b) is a maximum.

Q4.

A solid right circular cylinder has radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$.
The total surface area of the cylinder is $800 \mathrm{~cm}^{2}$.
(a) Show that the volume, $V \mathrm{~cm}^{3}$, of the cylinder is given by

$$
V=400 r-\pi r^{3} .
$$

Given that r varies,
(b) use calculus to find the maximum value of V, to the nearest cm^{3}.
(c) Justify that the value of V you have found is a maximum.

Q5.

Figure 2
A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, $x \mathrm{~cm}$, as shown in Figure 2.
The volume of the cuboid is 81 cubic centimetres.
(a) Show that the total length, $L \mathrm{~cm}$, of the twelve edges of the cuboid is given by

$$
L=12 x+\frac{162}{x^{2}}
$$

(b) Use calculus to find the minimum value of L.
(c) Justify, by further differentiation, that the value of L that you have found is a minimum.

