Stationary Points and Modelling Questions (52 Marks)

Q1.

The curve with equation

 $y = x^2 - 32\sqrt{x} + 20, \quad x > 0$

has a stationary point P.

Use calculus

(a)	to find the coordinates of P,
-----	-------------------------------

(b) to determine the nature of the stationary point *P*.

(6)

(3)

(Total 9 marks)

Q2.

The curve	C has equation	$y = 12\sqrt{(x) - x^{\frac{3}{2}}}$	- 10,	<i>x</i> > 0
-----------	----------------	--------------------------------------	-------	--------------

(a) Use calculus to find the coordinates of the turning point on <i>C</i> .	
d^2v	(7)
(b) Find $\overline{dx^2}$.	(2)
	(~)

(c) State the nature of the turning point.

(Total 10 marks)

(1)

Q3.

The volume $V \text{ cm}^3$ of a box, of height *x* cm, is given by

 $V = 4x(5 - x)^2$, 0 < x < 5

(a) Find $\frac{\mathrm{d}V}{\mathrm{d}x}$.

(b) Hence find the maximum volume of the box.

(4)

(4)

(c) Use calculus to justify that the volume that you found in part (b) is a maximum.

(2)

(Total 10 marks)

Q4.

A solid right circular cylinder has radius *r* cm and height *h* cm.

The total surface area of the cylinder is 800 cm².

(a) Show that the volume, $V \text{ cm}^3$, of the cylinder is given by $V = 400r - \pi r^3$

$$= 400r - \pi r^3.$$
 (4)

Given that r varies,

- (b) use calculus to find the maximum value of V, to the nearest cm³.
- (c) Justify that the value of *V* you have found is a maximum.

(2) (Total 12 marks)

(6)

Q5.

Figure 2

- A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, *x* cm, as shown in Figure 2. The volume of the cuboid is 81 cubic centimetres.
- (a) Show that the total length, *L* cm, of the twelve edges of the cuboid is given by

$$L = 12x + \frac{162}{x^2}$$

(3)

(b) Use calculus to find the minimum value of *L*.

(6)

(c) Justify, by further differentiation, that the value of *L* that you have found is a minimum.

(2) (Total 11 marks)