Mathematics Advanced Subsidiary Paper 1: Pure Mathematics

Paper 1 Pure Mathematics			
You must have:			
mathematical formulae and statistical tables,			
calculator			
Time	2 hours		

Name	
Class	
Teacher name	

Total marks	/100
-------------	------

1 Find an equation of a line *l* which passes through P(-2, 6) and Q(4, -2). Give your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

(3)

(Total for Question 1 is 3 marks)

2 $\overrightarrow{AB} = -3k\mathbf{i} + k\mathbf{j}$

The magnitude of \overrightarrow{AB} is $5\sqrt{30}$

Find the possible values of *k*, leaving your answer in simplified surd form.

(3)

(Total for Question 2 is 3 marks)

She charges £250 for a 300 word article and £410 for a 700 word article.	
a Write an equation linking words, w, and fee, F, in the form $F = aw + b$.	
	(3)
b Interpret the values of <i>a</i> and <i>b</i> .	
	(2)
She charges a company £650 to write another article.	
c Calculate the word length of this article.	
	(2)

3 A freelance journalist charges an initial fixed fee and then an extra fee per word.

(Total for Question 3 is 7 marks)

4 Given that $y = \frac{16}{81}x^4$, express each of the following in the form kx^n , where k and n are constants. **a** $y^{\frac{3}{4}}$

(2) **b**
$$\frac{2}{3}y^{-\frac{1}{2}}$$

(2)

(Total for Question 4 is 4 marks)

5 Point *P* lies on the line with equation 2x - y - 5 = 0.

Point *P* is a distance of $\sqrt{130}$ from the origin.

Show that there are two possible positions for point P and find the coordinates for each of these points. Show each step of your working.

(5)

(Total for Question 5 is 5 marks)

- 6 A company expects to sell 20000 computers in the first year if the price of each computer is £650. Let x represent the number of f's by which the price has decreased.
 - **a** Write an expression for the price, p, of one computer, in the form p = a + bx.

(1)

The company expects to sell an additional 50 computers every time the price decreases by £1. **b** Write an expression for the number of computers sold, *C*, in the form C = d + ex. (1) Revenue is defined by the formula, revenue = (number of computers sold) × (cost of one computer) **c** Write an equation for revenue, *r*, in the form $A - B(x - C)^2$, where *A*, *B* and *C* are constants to be found. (4) The company wishes to maximise the revenue. **d** Using your answer to part **c**, or othwerwise, state the price the company should charge for each computer and the revenue they will attain. (2)

(Total for Question 6 is 8 marks)

7 The points P(-5, -13) and Q(7, 3) lie on a circle *C* with centre (a, -8) and radius *r*. Find the equation of the circle *C*.

(8)

(Total for Question 7 is 8 marks)

8 The equation $kx^2 - 3kx + 15 = 0$, where k is a constant, has two real roots.

Prove that k < 0 or $k > \frac{20}{3}$.

(3)

(Total for Question 8 is 3 marks)

9 $f(x) = x^2 - 7x + 10$ g(x) = 6 - 2x

- **a** Sketch the graphs of y = f(x) and y = g(x) on the same axes.
- (4) **b** Find the coordinates of any points of intersection. (4)
- **c** Write down the sets of values of *x* for which g(x) > f(x).

(1)

(Total for Question 9 is 9 marks)

10 Figure 1 shows a triangle, ABC.

 $\angle ABC = 30^{\circ}$ AB = (6 - x) cmBC = (x + 2) cm.

The area of the triangle is $A \text{ cm}^2$.

a Show that $A = \frac{1}{4} \left(-x^2 + 4x + 12 \right)$.

(3)

b Find the maximum value of *A* and the value of *x* at which it occurs.

(4)

(Total for Question 10 is 7 marks)

11 Prove that, for any positive numbers *a* and *b*, where $a \neq b$, $a^2 + b^2 > 2ab$.

(3)

(Total for Question 11 is 3 marks)

12 In the binomial expansion of $(1 + px)^8$, the coefficient of x^3 is 252 times the coefficient of x. Find the value of the coefficient of x^2 .

(5)

(Total for Question 12 is 5 marks)

13 Solve for $-180^{\circ} \le x < 180^{\circ}$, $8\cos^2 x + 10\cos x = 13 - 5\sin^2 x$.

Give your answers to one decimal place.

(5)

(Total for Question 13 is 5 marks)

14 Prove, from first principles, that the derivative of $4x^3$ is $12x^2$.

(4)

(Total for Question 14 is 4 marks)

- 15 The value, V in £'s, of a car t years after purchase can be modelled by the equation,
 - $V = 28000e^{-0.19t} + 2000$ for $t \ge 0$
 - **a** State the initial value of the car.
 - **b** Interpret the meaning of the 2000 in the model.

(1)

(1)

c Find $\frac{dV}{dt}$ and state how $\frac{dV}{dt}$ shows the value of the car decreases over time.

(2)

d Show that, when the value of the car is £18 000, $t = \frac{100}{19} \ln\left(\frac{7}{4}\right)$.

(4)

(Total for Question 15 is 8 marks)

16 Figure 2 shows a line with equation x + y = 11.

It intersects a curve with equation $y = -\frac{1}{2}x^2 + 4x + 3$ at the points *P* and *Q*.

The shaded region R_1 is a trapezium bounded by PQ, the x-axis and lines parallel to the y-axis through P and Q.

The shaded region R_2 is the finite region bounded by the line and the curve.

Show that the areas of the shaded regions R_1 and R_2 are in the ratio 2:1.

(8)

(Total for Question 16 is 8 marks)

17 Figure 3 shows the plan view of a garden where part of the garden has been enclosed with 250 m of fencing.

The shape of the enclosed part of the garden is a rectangular section joined to a semicircular section.

Given that the radius of the semicircular section is r metres, show that,

a the area, $A \text{ m}^2$, of the enclosed part of the garden is given by $A = 250r - \left(\frac{4+\pi}{2}\right)r^2$

(5)

b the maximum value of the area of the enclosed part of the garden is $A = \frac{250^2}{2(4+\pi)}$

(5)

(Total for Question 17 is 10 marks)

TOTAL FOR PAPER IS 100 MARKS