Mathematics
 Advanced Subsidiary
 Paper 1: Pure Mathematics

Paper 1 Pure Mathematics	
You must have: mathematical formulae and statistical tables, calculator	
Time	2 hours

Name	
Class	
Teacher name	

Total marks /100

1 Find an equation of a line l which passes through $P(-2,6)$ and $Q(4,-2)$.
Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(Total for Question 1 is $\mathbf{3}$ marks)
$2 \overrightarrow{A B}=-3 k \mathbf{i}+k \mathbf{j}$
The magnitude of $\overrightarrow{A B}$ is $5 \sqrt{30}$
Find the possible values of k, leaving your answer in simplified surd form.

3 A freelance journalist charges an initial fixed fee and then an extra fee per word.
She charges $£ 250$ for a 300 word article and $£ 410$ for a 700 word article.
a Write an equation linking words, w, and fee, F, in the form $F=a w+b$.
b Interpret the values of a and b.

She charges a company $£ 650$ to write another article.
c Calculate the word length of this article.

4 Given that $y=\frac{16}{81} x^{4}$, express each of the following in the form $k x^{n}$, where k and n are constants.
a $y^{\frac{3}{4}}$
b $\frac{2}{3} y^{-\frac{1}{2}}$

Pure Mathematics (AS) End of Course Paper 1

5 Point P lies on the line with equation $2 x-y-5=0$.
Point P is a distance of $\sqrt{130}$ from the origin.
Show that there are two possible positions for point P and find the coordinates for each of these points.
Show each step of your working.

6 A company expects to sell 20000 computers in the first year if the price of each computer is $£ 650$.
Let x represent the number of $£$'s by which the price has decreased.
a Write an expression for the price, p, of one computer, in the form $p=a+b x$.

The company expects to sell an additional 50 computers every time the price decreases by $£ 1$.
b Write an expression for the number of computers sold, C, in the form $C=d+e x$.

Revenue is defined by the formula, revenue $=($ number of computers sold $) \times($ cost of one computer $)$
c Write an equation for revenue, r, in the form $A-B(x-C)^{2}$, where A, B and C are constants to be found.

The company wishes to maximise the revenue.
d Using your answer to part c, or othwerwise, state the price the company should charge for each computer and the revenue they will attain.

7 The points $P(-5,-13)$ and $Q(7,3)$ lie on a circle C with centre $(a,-8)$ and radius r. Find the equation of the circle C.

8 The equation $k x^{2}-3 k x+15=0$, where k is a constant, has two real roots.
Prove that $k<0$ or $k>\frac{20}{3}$.
(Total for Question 8 is $\mathbf{3}$ marks)
$9 \mathrm{f}(x)=x^{2}-7 x+10$
$\mathrm{g}(x)=6-2 x$
a Sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ on the same axes.
b Find the coordinates of any points of intersection.
c Write down the sets of values of x for which $\mathrm{g}(x)>\mathrm{f}(x)$.

10 Figure 1 shows a triangle, $A B C$.

$\angle A B C=30^{\circ}$
$A B=(6-x) \mathrm{cm}$
$B C=(x+2) \mathrm{cm}$.
The area of the triangle is $A \mathrm{~cm}^{2}$.
a Show that $A=\frac{1}{4}\left(-x^{2}+4 x+12\right)$.
b Find the maximum value of A and the value of x at which it occurs.

11 Prove that, for any positive numbers a and b, where $a \neq b, a^{2}+b^{2}>2 a b$.
(Total for Question 11 is 3 marks)

12 In the binomial expansion of $(1+p x)^{8}$, the coefficient of x^{3} is 252 times the coefficient of x.
Find the value of the coefficient of x^{2}.
(Total for Question 12 is 5 marks)

13 Solve for $-180^{\circ} \leqslant x<180^{\circ}, 8 \cos ^{2} x+10 \cos x=13-5 \sin ^{2} x$.
Give your answers to one decimal place.

14 Prove, from first principles, that the derivative of $4 x^{3}$ is $12 x^{2}$.
(Total for Question 14 is 4 marks)

Pure Mathematics (AS) End of Course Paper 1

15 The value, V in $£$'s, of a car t years after purchase can be modelled by the equation,
$V=28000 e^{-0.19 t}+2000$ for $t \geqslant 0$
a State the initial value of the car.
b Interpret the meaning of the 2000 in the model.
c Find $\frac{\mathrm{d} V}{\mathrm{~d} t}$ and state how $\frac{\mathrm{d} V}{\mathrm{~d} t}$ shows the value of the car decreases over time.
d Show that, when the value of the car is $£ 18000, t=\frac{100}{19} \ln \left(\frac{7}{4}\right)$.

16 Figure 2 shows a line with equation $x+y=11$.
It intersects a curve with equation $y=-\frac{1}{2} x^{2}+4 x+3$ at the points P and Q.
The shaded region R_{1} is a trapezium bounded by $P Q$, the x-axis and lines parallel to the y-axis through P and Q.

The shaded region R_{2} is the finite region bounded by the line and the curve.

Figure 2

Show that the areas of the shaded regions R_{1} and R_{2} are in the ratio 2:1.

17 Figure 3 shows the plan view of a garden where part of the garden has been enclosed with 250 m of fencing.
The shape of the enclosed part of the garden is a rectangular section joined to a semicircular section.

Figure 3

Given that the radius of the semicircular section is r metres, show that,
a the area, $A \mathrm{~m}^{2}$, of the enclosed part of the garden is given by $A=250 r-\left(\frac{4+\pi}{2}\right) r^{2}$
b the maximum value of the area of the enclosed part of the garden is $A=\frac{250^{2}}{2(4+\pi)}$

