Similar Figures

A and B are mathematically similar
The volume of $A=1000 \mathrm{~cm}^{3}$
The volume of $B=8000 \mathrm{~cm}^{3}$
a) If the height of $A=15 \mathrm{~cm}$ find height of B
b) If surface area of $B=200 \mathrm{~cm}^{2}$ find surface area of A

$$
\begin{array}{lcl}
\text { Vol } & A & : B \\
\text { Length } & 1000: 8000 & =1: 8 \\
\text { Area } & \sqrt[3]{1000}: \sqrt[3]{8000}=10: 20=1: 2 \\
& 1^{2}: 2^{2} & =1: 4
\end{array}
$$

a) Height of $B=$ Height of $A \times \frac{2}{1}$

$$
15 \times 2=30 \mathrm{~cm}
$$

b)

$$
\begin{aligned}
\text { Surface Area } A & =\text { Surface Area } B \times \frac{1}{4} \\
& =200 \times \frac{1}{4}=50 \mathrm{~cm}^{2}
\end{aligned}
$$

Exercise 14 D Page 324 Blue Books
5)

$$
\begin{aligned}
\text { Small } & \text { Large } \\
\text { Length } 1 & : 3 \\
\text { Area } 1^{2} & : 3^{2}=1: 9 \\
\text { Large area } & =\text { small area } \times \frac{9}{1} \\
& =15 \times 9 \\
& =135 \mathrm{~cm}^{2}
\end{aligned}
$$

6)

Small: large

Length 1:2
a) Asec $1^{2}: 2^{2}=1: 4$

$$
\begin{aligned}
\text { large area } & =\text { samllasea } \times \frac{4}{1} \\
& =14 \times 4 \\
& =56 \mathrm{~cm}^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { Small: large } \\
& \text { Len } 1: 3 \\
& \text { Area } 1^{2}: 3^{2}=1: 9 \\
& \text { large area }=\text { smallarea } \times \frac{9}{1} \\
&=14 \times 9 \\
&=126 \mathrm{~cm}^{2}
\end{aligned}
$$

