Costings Related to Area and Volume

Ex

A cuboid container measures 12 h by 6 m by 4 m
It is to be filled with sand costing 45.75 per coble metre
How much will this cost?

$$
\begin{aligned}
& \text { Volume }=12 \times 6 \times 4=288 \mathrm{~m}^{3} \\
& \text { Cost }=288 \times 45.75=41656
\end{aligned}
$$

2) Same container has outside painted A ≥ 3.25 tin of paint will cover an area of $4 \mathrm{~m}^{2}$. Find the cost of the paint required

Surface Area $2 \times 12 \times 6=144$

$$
\begin{aligned}
& 2 \times 12 \times 4=96 \\
& 2 \times 6 \times 4=\frac{48}{288} \mathrm{~m}^{2} \\
& \text { Total }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{288}{4}=72 \text { tins required } \\
& 72 \times \notin 3.25=\{234
\end{aligned}
$$

Linking Algebra to Perimeter and Area

$2 x+1$	$x+3$
Rect $x-2$	S_{q}
	$x+3$

Rectangle and Square have same perimeter Find area of each

$$
\begin{aligned}
\text { Rect Perimeter } & =2(2 x+1)+2(x-2) \\
& =4 x+2+2 x-4=6 x-2
\end{aligned}
$$

Square Perimeter $=4(x+3)=4 x+12$

Perimeters Equal so

$$
2(2)+1
$$

$$
=15
$$

$$
\begin{aligned}
& 7-2 \\
& =5
\end{aligned}
$$

$$
\begin{array}{rl}
6 x-2 & =4 x+12 \\
6 x-4 x & =12+2 \\
2 x & =14 \\
x & =7 \\
?+3 \\
=10 & 7+3 \\
& =10 \\
& =10 \times 10 \\
& =100 \mathrm{~cm}^{2}
\end{array}
$$

Area
15×5

$$
=75 \mathrm{~cm}^{2}
$$

2)

Perimeter $=80 \mathrm{~cm}$
Find area

$$
\begin{gathered}
2(3 x+7)+2(x+1)=80 \\
6 x+14+2 x+2=80 \\
8 x+16=80 \\
8 x=80-16 \\
8 x=64 \\
x=\frac{64}{8} \\
x=8 \mathrm{~cm}
\end{gathered}
$$

$$
\begin{aligned}
\text { Length }= & 3(8)+7=31 \mathrm{~cm} \\
\text { width }= & 8+1=9 \mathrm{~cm} \\
\text { Area }= & 31 \times 9 \\
& 279 \mathrm{~cm}^{2}
\end{aligned}
$$

7 Rachel bought a cylindrical tube containing three power balls.
Each ball is a sphere of radius 5 cm .
The balls touch the sides of the tube.
The balls touch the top and bottom of the tube.
Work out the volume of empty space in the tube.
8 a Which has the greater volume, a sphere with

Sphere

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& C_{y} \text { linter } \\
& V=\pi r^{2} h
\end{aligned}
$$

 diameter 3 cm or a cube with side length 3 cm ?
b Which has the greater surface area, a sphere with diameter 3 cm or a cube with side length 3 cm ?
7)

$$
\begin{aligned}
\text { Cylinder } \operatorname{Vol} & =\pi r^{2} h \\
& =\pi \times 5^{2} \times 30 \\
& =750 \pi
\end{aligned}
$$

3 Spheres Vol $=3 \times \frac{4}{7} \pi r^{3}$

$$
\begin{aligned}
& =3 \times \frac{4}{3} \pi \times 5^{3} \\
& =600 \pi
\end{aligned}
$$

$$
\begin{aligned}
\text { Empty Space } & =250 \pi-600 \pi \\
& =150 \pi \\
& =471 \mathrm{~cm}^{3}
\end{aligned}
$$

8) a) Cube Vol $=3 \times 3 \times 3=27 \mathrm{~cm}^{3}$

Sphere Vol $=\frac{4}{3} \times \pi \times 1.5^{3}=14.1 \mathrm{cn}^{3}$
b) Cube surface area $6 \times 3 \times 3=58 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\text { Sphere surface asea } & =4 \pi r^{2} \\
& =4 \pi \times 1.5^{2} \\
& =28.3 \mathrm{~cm}^{2}
\end{aligned}
$$

