

GCSE MATHEMATICS

AQA | Edexcel | OCR | WJEC

(Level 5 - 7)

Upper and Lower Bounds

Please write clearly in block capitals

Forename:	
Surname:	

Materials

For this paper you must have:

mathematical instruments

You *can* use a calculator.

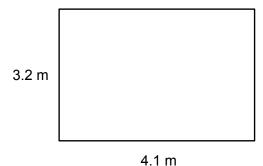
Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- You may ask for graph paper, tracing paper and more answer paper.
 These must be tagged securely to this answer book.

Advice


· In all calculations, show clearly how you work out your answer.

A wooden toy is 6 cm tall to the nearest cm.	
Find the upper and lower bounds for the height of the toy.	
LB = 5.5 cm UB = 6.5 cm	
UB = 6.5 cm	
Answer	
The mass of the toy is 2.2 kg to the nearest 0.1 kg.	
Find the error interval, in which the true mass of the toy, m , lies	
$\frac{2 \cdot 15 \text{kg}}{2 \cdot 25 \text{kg}} \leq m < \frac{2 \cdot 25 \text{kg}}{2 \cdot 25 \text{kg}}$	
The length of a log is measured exactly to be 55.6m	
Calculate the length of the log truncated to the nearest meter.	
Answer	
Turn over for next question	

2 A diagram of a rectangular garden is shown below.

(Level 5)

Each length is measured to the nearest 0.1 m

Calculate minimum and maximum possible values for area of the garden.

Give your answers to 1 decimal place.

[3 marks]

Min Asea = 4.05 x 3.	2575.21 = 21.
	= 12.8 n ²
Max Area = 4.15x 3.25	= 13.4875
Maximum area:	= 13.5 m ² m ²
Minimum area:	m^2

MathsMadeEasy Revision App

- ✓ Video revision for every GCSE Maths topic
- Thousands of practice questions
- Online Mock Exams with video solutions

Try it now at mme.la/app or scan the barcode

3 The distance from Sarah's house to Peter's house is 230 miles measured to the nearest 10 miles.

(Level 6)

Sarah took exactly 4 hours to complete this journey.

Sarah says:

"My average speed was 60 mph for the journey to Peter's house"

Is Sarah correct?

You must explain your answer

[3 marks]

225 miles = Distance < 235 miles

No et 60 mph time would be less than 4 his

Answer

GCSE Maths Revision Cards

- All major GCSE maths topics covered
- Higher and foundation
- All exam boards AQA, OCR, Edexcel, WJEC

Get them at mme.la/cards or scan the barcode

Turn over ▶

4 x and y are measured as 3.42 m and 0.92 m, both correct to the nearest 0.01 m.

(Level 6)

4(a) Find the upper and lower bounds of x and y.

[2 marks]

[2 marks]

$$3.415 \leq \times \leq 3.425$$

4(b)
$$z = \frac{1}{x} + y$$

Find the maximum and minimum possible values of z.

Give your answer to 3 decimal places.

 $M_{94} = \frac{1}{3.475} + 0.925 = 1.2178$ = 1.218

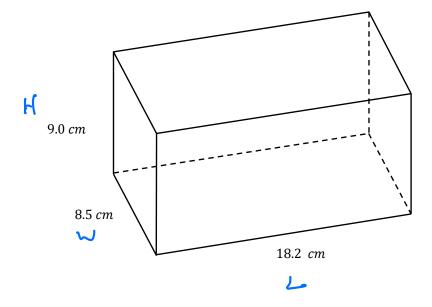
Min Z =
$$\frac{1.20697}{3.425}$$
 = 1.20697

Answer = 1.207

GCSE Maths Practice Exam Papers

- Paper 1, 2, 3 and mark scheme in every set
- All exam boards AQA, OCR, Edexcel, WJEC

Get them at mme.la/papers or scan the barcode



....

5 The dimensions of a cuboid container are shown below.

(Level 7)

Each length has been measured to 1 decimal place.

5(a) Calculate the upper bound for the volume of the cuboid.

Give you answer to 2 decimal places.

[2 marks]

$$18.75 \leq L \leq 18.25$$
 $8.45 \leq W \leq 8.55$
 $8.95 \leq H \leq 9.05$

Upper bound for vol =
$$18.25 \times 8.55 \times 9.05$$

Answer $1412.139 = 1412.14 \text{ cm}^3$

Question continues on next page

Joe ha	as a bucket containing 1370cm ³ of water measured to the nearest 10 cm ³ .	
Joe Sa	ays	
"If I tip	my bucket of water in the cuboid container, it will never overflow"	
Is Joe	correct?	
You m	nust explain your answer	
	3 [3	3 mark
	1365 cm3 = Butest = 1375 cm	
٦,	1 V11 of cosoid 18.15 x 8.45 x 8.95	
	= 1372.639	
	$= 1372.639$ $= 1372.64 c^{3}$	
	1272 (4	
	1375 7 1372,64	
	so cuboid might overflow	
Answe		

Turn over for next question

6 A ball is dropped from a height of *d* meters.

(Level 7)

The time, t seconds, taken for the ball to reach the ground is given by

$$t = \sqrt{\frac{2d}{g}}$$

where g is the acceleration due to gravity.

d = 12.4 m correct to 3 significant figures

g = $9.8 \ m/s^2$ correct to 2 significant figures.

9.75 = 9 = 9.85

6(a) Find the lower bound of *d*.

[1 mark]

Answer

6(b) Find the minimum value of t.

Give your answer to 2 decimal places.

[3 marks]

$$M_{in} \in = \frac{2 \times d_{min}}{g_{max}} = \frac{2 \times 12.35}{9.85}$$

Answer

= 1.58 L 22p

End of question