2. The sequence of positive numbers $u_1, u_2, u_3, ...$ is given by:

$$u_{n+1} = (u_n - 3)^2, u_1 = 1.$$

(a) Find u_2 , u_3 and u_4 .

(3)

(b) Write down the value of u_{20} .

(1)

 $U_2 = (1-3) = 4$

 $U_3 = (4-3)^2 = 1$

 $v_4 = (1-3)^2 = 4$

6	U ₂₀	=	4
			-

Q2

(Total 4 marks)

4. A sequence a_1, a_2, a_3, \ldots is defined by

$$a_1 = 3$$
,
 $a_{n+1} = 3a_n - 5$, $n \ge 1$.

(a) Find the value of a_2 and the value of a_3 .

(2)

(b) Calculate the value of $\sum_{r=1}^{5} a_r$.

(3)

a)
$$a_2 = 3(3) - 5 = 4$$

$$a_3 = 3(4) - 5 = 7$$

b)
$$a_4 = 3(7) - 5 = 16$$

$$a_5 = 3(16) - 5 = 43$$

$$\sum_{r=1}^{5} a_r = 3 + 4 + 7 + 16 + 43 = 73$$

8. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = k,$$

$$a_{n+1} = 3a_n + 5, n \geqslant 1,$$

where *k* is a positive integer.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 9k + 20$.

(2)

- (c) (i) Find $\sum_{r=1}^{4} a_r$ in terms of k.
 - (ii) Show that $\sum_{r=1}^{4} a_r$ is divisible by 10.

(4)

$$a_2 = 3k + 5$$

$$a_3 = 3(3k+5) + 5$$

$$= 9k + 15 + 5 = 9k + 20$$

$$a_{\alpha} = 3(9k+20) + 5$$

i)
$$\frac{4}{2a_r} = K + 3K + 5 + 4K + 20 + 27K + 65$$

ii)
$$\frac{4}{2}$$
 ar = 40 K+90 = 10 (4K+9)

 $\frac{\mathcal{E}_{ar}}{r=1} = 40K+90 = 10(4K+9)$ 10 is a factor since 4K+9 is an integer $\frac{\mathcal{E}_{ar}}{\mathcal{E}_{ar}} = 40K+90 = 10(4K+9)$

7. A sequence is given by:

$$x_1 = 1,$$

$$x_{n+1} = x_n(p + x_n),$$

where p is a constant $(p \neq 0)$.

(a) Find x_2 in terms of p.

(1)

(b) Show that $x_3 = 1 + 3p + 2p^2$.

(2)

Given that $x_3 = 1$,

(c) find the value of p,

(3)

(d) write down the value of x_{2008} .

(2)

 $x_2 = |(p+1)| = p+1$ a)

X2 = (P+1)(P+P+1)

(p+1)(2p+1)

 $2p^2 + 2p + p + 1$

 $2p^{2} + 3p + 1$

 $2\rho^2 + 3\rho + 1 = 1$ 7C2 = 1

 $2\rho^{2} + 3\rho = 0$

2p+3)=0

odd terms = 1, even = - }

5. A sequence x_1, x_2, x_3, \dots is defined by

$$x_1 = 1$$
,

$$x_{n+1} = ax_n - 3, \ n \ge 1,$$

where a is a constant.

(a) Find an expression for x_2 in terms of a.

(1)

(b) Show that $x_3 = a^2 - 3a - 3$.

(2)

Given that $x_3 = 7$,

(c) find the possible values of a.

(3)

a) $x_2 = a - 3$

$$x_3 = a(a-3) - 3 = a^2 - 3a - 3$$

-3a - 10 = 0

$$(a+2)(a-5)=0$$

a = -2

or a = 5

7. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = k$$
,

$$a_{n+1}=2a_n-7, \qquad n\geqslant 1,$$

where k is a constant.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 4k - 21$.

(2)

Given that $\sum_{r=1}^{4} a_r = 43$,

(c) find the value of k.

(4)

$$a_2 = 2k - 7$$

b)
$$a_3 = 2(2k-7) - 7$$

$$= 4k - 14 - 7$$

$$= 4k - 21$$

c)
$$a_4 = 2(4k-21)-7$$

$$\frac{4}{\sum_{q} = K + 2k - 7 + 4k - 2l + 8k - 49 = 43}$$

$$15k - 77 = 43$$

$$15 k = 120$$

$$K = 120 = 8$$

5. A sequence of positive numbers is defined by

$$a_{n+1} = \sqrt{(a_n^2 + 3)}, \quad n \geqslant 1,$$

 $a_1 = 2$

(a) Find a_2 and a_3 , leaving your answers in surd form.

(2)

(b) Show that $a_5 = 4$

(2)

$$a_2 = \sqrt{2^2 + 3} = \sqrt{7}$$

b)
$$a_4 = \sqrt{\sqrt{10^2 + 3}} = \sqrt{13}$$