Projectiles AQA M1 2005-2010 Mark Schemes

Jan 05

8(a)	Ball is a particle	B1		One appropriate assumption
	No air resistance	B1	2	Second appropriate assumption
(b)(i)	$0 = 12\sin 40^{\circ} - 9.8t$ $t = \frac{12\sin 40^{\circ}}{9.8} = 0.787 \text{ s}$	M1 A1 M1 A1	4	Equation to find time at maximum height Correct equation Solving for t Correct time
(ii)	$h = 12\sin 40^{\circ} \times 0.7871 - 4.9 \times 0.7871^{2}$ $= 3.04 \text{ m}$	M1 A1 A1	3	Substituting time from previous into expression for height Correct expression AG; correct height from correct working
(c)	$2.44 = 12\sin 40^{\circ}t - 4.9t^2$	M1		Equation for time to get to the bar, based on height being 2.44
	$4.9t^2 - 12\sin 40^\circ t + 2.44 = 0$	A1		Correct LHS
		A1		Correct RHS
	t = 0.4385 or 1.136	m1 A1		Solving quadratic Correct time / times
		M1		Substituting their larger time into an
	$s = 12\cos 40^{\circ} \times 1.136 = 10.4 \text{ m}$	1711		expression for the horizontal displacement
		A1	7	Correct distance
	Total		16	

Jan 06

5(0)	1 ,			
5(a)	$s = ut + \frac{-at^2}{2}$			
	$0 = 2 \frac{1}{2} ut - \frac{1}{2} gt^2$	M1		full method required for time
	2 2 3	A1	-	(equation of motion, or standard result)
	$s = ut + \frac{1}{2}at^2$ $0 = 2\frac{1}{2}ut - \frac{1}{2}gt^2$ $0 = t\left(2\frac{1}{2}u - \frac{1}{2}gt\right)$	m1		
	$t = \frac{5u}{g}$	A1	4	(if $g = 9.8$ used, lose last A1)
(b)	$OA = 6u \times \frac{5u}{g}$	M1		
	$30u^2$	A1	2	
	$=\frac{30u^2}{g}$	Al	2	cao
			7	
(c)	speed ² = $(6u)^2 + \left(2\frac{1}{2}u\right)^2$ speed = $6\frac{1}{2}u$	M1		
	speed = $6\frac{1}{2}u$	A1	2	cao
(d)	Least speed, at top, $= 6u$	B1	1	
	Total		9	

Q	Solution	Marks	Total	Comments
7(a)	$0^2 = (50\sin 40^\circ)^2 + 2 \times (-9.8)h$	M1A1		Equation for h with $v = 0$ and a
				component of velocity. Correct equation
	$h = \frac{(50\sin 40^\circ)^2}{2 \times 9.8} = 52.7$	dM1		Solving for h
	$n = 2 \times 9.8$	A1		Correct h
	Alt			
	$0 = 50\sin 40^{\circ} - 9.8t$	(M1)		Equation for t with $v = 0$ and a component
	50 gin 40°	(A1)		of velocity Correct t
	$t = \frac{50\sin 40^{\circ}}{9.8} = 3.280$	(A1)		Correct i
		(dM1)		Expression for <i>h</i> with a component of
	$h = 50 \sin 40^{\circ} \times 3.280 - \frac{1}{2} \times 9.8 \times 3.280^{2}$	(divii)		velocity
	= 52.7	(A1)	4	Correct h
	ALLOW 52.6	(111)	·	
(b)	$6 = 50\sin 40^{\circ}t - 4.9t^2$	M1A1		Forming a quadratic in t. Correct terms
				with any signs
	$0 = 4.9t^2 - 50\sin 40^{\circ}t + 6$	A1		Correct equation
	$0 = 4.9t - 30 \sin 40^{-}t + 6$	Ai		Correct equation
	50-in 40% + \((50-in 40%)^2 \) 4 \(4.0 \) 6	dM1		Solving quadratic
	$t = \frac{50\sin 40^{\circ} \pm \sqrt{(50\sin 40^{\circ})^{2} - 4 \times 4.9 \times 6}}{200000000000000000000000000000000000$			
	2×4.9 = 0.192 or 6.37			
	t = 6.37	A2	6	Correct solution selected
	Alt	112		Correct solution serected
	$46.7 = 4.9t_1^2$	(M1)		Finding two times
	•	(dM1)		Equation for time to go down
	$t_1 = 3.087$	(A1)		Correct time
	$t_2 = 3.280$	(A1)		Time to go up
	t = 3.087 + 3.280 = 6.37	(A2)		Correct total
	Total		10	

Jan 08

7(a)	It is a particle /No air resistance / lift	B1		Particle
	forces act on the ball.	B1	2	Other acceptable assumption
				Deduct one mark for each additional
				incorrect assumption.
(b)	1	M1		Vertical equation to find <i>t</i> .
(b)	$V\sin 40^{\circ}t - \frac{1}{2} \times 9.8t^2 = 0$	A1		Correct equation
	_			(Equals zero may be implied)
	$t = \frac{V\sin 40^{\circ}}{4.9}$	dM1		Solving for <i>t</i>
	4.9 AG	A1		Correct t
	$s = V\cos 40^{\circ} \times \frac{V\sin 40^{\circ}}{4.9}$			
	4.9			
	$= \frac{V^2 \cos 40^\circ \sin 40^\circ}{4.9}$	M1		Finding range with their <i>t</i>
	4.9	A1	6	Correct range from correct working
				SC Quoting the formula for the range 2
				marks.
(c)	$V^2 \cos 40^\circ \sin 40^\circ$	M1		An equation to find one value of V .
(c)	$76 < \frac{V^2 \cos 40^\circ \sin 40^\circ}{4.9} < 82$	IVII		An equation to find one value of v.
		A1		Correct value for V
	$\sqrt{\frac{76 \times 4.9}{\cos 40^{\circ} \sin 40^{\circ}}} < V < \sqrt{\frac{82 \times 4.9}{\cos 40^{\circ} \sin 40^{\circ}}}$			
	$V \cos 40^{\circ} \sin 40^{\circ}$ $V \cos 40^{\circ} \sin 40^{\circ}$	A1		Other value of V correct
	27.5 < V < 28.6	A1	4	Correct range of values
	21.3 < y < 20.0			Accept 27.5 – 28.6 but not 28.6-27.5
				For using values close to 76 and 82
				deduct one mark.
	Total		12	

Jan 09

Q	Solution	Marks	Total	Comments
8				If candidates have already used
				g = 9.81 do not penalise again on this
				question.
(a)	$0^2 = (28\sin 50^\circ)^2 + 2 \times (-9.8)s$	M1		M1: Equation to find the max height,
	(= = = = = = = = = = = = = = = = = = =	A1		with $v = 0$, $u = 28 \sin 50^{\circ}$ or
				$u = 28\cos 50^{\circ} \text{ and } -9.8 \text{ or } -g.$
				A1: Correct equation
	$s = \frac{\left(28\sin 50^{\circ}\right)^{2}}{2 \times 9.8} = 23.5 \text{ m}$	dM1		dM1: Solving for the height
	$s = \frac{(2000000)}{200000} = 23.5 \text{ m}$	A1		A1: Correct height. Awrt 23.5
	2×9.8			Note: If using a memorised formula,
				either 4 marks if final answer correct,
				3 marks if substituted correctly but
				evaluated incorrectly, otherwise zero.
	OR			
	$0 = 28\sin 50^{\circ} - 9.8t$	(M1)		M1: Equation to find time to the max
	$t = \frac{28\sin 50^{\circ}}{9.8} = 2.1887$			height, with $v = 0$, $u = 28 \sin 50^{\circ}$ or
	9.8	(A1)		$u = 28\cos 50^{\circ} \text{ and } -9.8 \text{ or } -g.$
				A1: Correct time
	$s = 28\sin 50^{\circ} \times 2.1887 - 4.9 \times 2.1887^{2} = 23.5$	(dM1)		dM1: Finding the height with their
		(A1)	4	time and $u = 28\sin 50^{\circ}$ or
				$u = 28\cos 50^{\circ} \text{ and } -4.9 \text{ or } -g/2$
				A1: Correct height. Awrt 23.5

Q	Solution	Marks	Total	Comments
8(b)	$2 = 28\sin 50^{\circ}t - 4.9t^2$	M1		M1: Quadratic equation in <i>t</i> with a
				± 2 , $u = 28\sin 50^{\circ}$ or $u = 28\cos 50^{\circ}$
		A1		and – 4.9 or – <i>g</i> /2.
		A1		A1: Correct terms A1: Correct signs for equation
	$0 = 4.9t^2 - 28\sin 50^{\circ}t + 2$	711		A1. Correct signs for equation
	t = 0.0953 or $t = 4.282$	dM1		dM1: Solving the quadratic equation
	$t = 4.282 = 4.28 \text{ s} \text{ (to 3 sf) } \mathbf{AG}$	A1		A1: Correct larger time selected from
	t = 4.202 = 4.203 (to 3 31) AG	711		two values.
	OR			
		(M1)		M1: Calculation of two times, which
				sum or differ to give the time of
	0. 20 : 500 .00			flight.
	$0 = 28\sin 50^{\circ} - 9.8t$	(A1)		A1: Correct time by equation for
	$t = \frac{28\sin 50^{\circ}}{9.8} = 2.1887$	(A1)		A1: Correct time by equation for zero vertical component of velocity
	9.8 OR			or maximum height.
	$23.5 = 28\sin 50^{\circ}t - 4.9t^2$			
	t = 2.1887			
	$21.5 = 4.9t^2$	(dM1)		dM1: Correct expression for time to
		(01.11)		fall.
	$t = \sqrt{\frac{21.5}{4.9}} = 2.0947$	(A1)		A1: Correct time.
	$\sqrt{4.9}$ 2.1887 + 2.0947 = 4.2834 = 4.28 (to 3sf) AG	(A1)	5	A1: Correct time. Accept 4.29 if
	2.1007 + 2.0747 - 4.2034 - 4.20 (10 381) AG	(AI)	3	their answer rounds to 4.29.

Q	Solution	Marks	Total	Comments
8(c)	$v_x = 28\cos 50^\circ (= 18.00 \text{ ms}^{-1})$	B1		B1: Horizontal component, need not
	,			be evaluated.
	$v_v = 28\sin 50^\circ - 9.8 \times 4.282 = -20.51 \text{ ms}^{-1}$	M1		M1: Equation for vertical component
	,			with $28\sin 50^{\circ}$ (or $28\cos 50^{\circ}$ if
				sin50° used for horizontal
		× **		component), -9.8 and awrt 4.28.
		A1		A1: Correct vertical component.
				Awrt ± 20.5
	$v = \sqrt{18.00^2 + 20.51^2} = 27.3 \text{ ms}^{-1}$	dM1		dM1: Finding speed with a + sign
	V V10.00 1 20.01 27.0 MD			inside the square root.
		A1F	5	A1F: Correct speed. Awrt 27.3.
				Intermediate values can be implied
				by final answer.
	Total		14	

Q	Solution	Marks	Total	Comments
7(a)	$5 = \frac{1}{2} \times 9.8t^2$	M1 A1	-	M1: Equation based on vertical motion with no velocity component, with ±5 and ±9.8 A1: Correct equation A1: Correct time from correct working.
	$t = \sqrt{\frac{5}{4.9}} = 1.01 \text{ s}$ AG	A1	3	Must see square root or $t^2 = 1.02$ OE Note: If $g = 9.81$ is used for the first time deduct one mark. Should still get 1.01 seconds.
(b)	$15 = V \times \sqrt{\frac{5}{4.9}}$ $V = 15\sqrt{\frac{4.9}{5}} = 14.8$	M1		M1: Using distance = speed×time OE
	$V = 15\sqrt{\frac{4.9}{5}} = 14.8$	A1	2	A1: Correct speed. Accept AWRT 14.8 or 14.9. Note: If $g = 9.81$ is used for the first time deduct one mark. Should get 14.9 ms ⁻¹ from $g = 9.81$.
(c)	$v_V = \pm 9.8 \times \sqrt{\frac{5}{4.9}} (= \pm 9.899)$ or $v_V = \sqrt{2 \times 9.8 \times 5} = 9.899$	M1A1		M1: Calculating vertical component of velocity. A1: Correct value. Accept 9.9 or similar
	$v = \sqrt{9.899^2 + 14.8^2} = 17.8 \text{ ms}^{-1}$	dM1 A1F	4	dM1: Finding magnitude (with addition not subtraction of squares inside the square root). A1: Correct speed. Accept AWRT 17.8 or AWRT 17.9. Note: If $g = 9.81$ is used for the first time deduct one mark. Should get 17.9 ms ⁻¹ from $g = 9.81$
(d)	$\tan \alpha = \frac{9.899}{14.8} \text{ or } \frac{14.8}{9.899}$ $\alpha = 34^{\circ}$	M1 A1F A1F	3	M1: Use of one of trig equations shown. A1F: Anything which rounds to 34° or 56° A1F: 34° CAO (33° scores M1A1A0)
	$\sin \alpha = \frac{9.899}{17.8} \text{ or } \frac{14.8}{17.8}$ $\alpha = 34^{\circ}$	(M1) (A1F) (A1F)		Only follow through if all method marks in (b) and (c) have been awarded (except the dM if tan used).
	$\cos \alpha = \frac{14.8}{17.8} \text{ or } \frac{9.899}{17.8}$ $\alpha = 34^{\circ}$	(M1) (A1F) (A1F)		
(e)	Particle Experiences no air resistance or no wind or only gravity or no other forces acting or no spin.	B1 B1	2	B1: Particle assumption B1: Other assumption. Ignore any other assumptions.
	Total		14	