Differentiation From First Principles Exercise

The derivative of $f(x)$ written as $f^{\prime}(x)$ is defined to be:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Exercise
Differentiate from first principles:

1) $f(x)=6 x^{5}$
2) $f(x)=x^{2}+3 x+5$
3) Let $f(x)=6 x^{5}$
then $f(x+h)=6(x+h)^{5}$

$$
=6\left[x^{5}+5 x^{4} h+10 x^{3} h^{2}+10 x^{2} h^{3}+5 x h^{4}+h^{5}\right]
$$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0}\left[\frac{6 x^{5}+30 x^{4} h+60 x^{3} h^{2}+60 x^{2} h^{3}+30 x h^{4}+6 h^{5}-6 x^{5}}{h}\right] \\
= & \lim _{h \rightarrow 0}\left[30 x^{4}+60 x^{3} h+60 x^{2} h^{2}+30 x h^{3}+6 h^{4}\right] \\
= & 30 x^{4}+0+0+0+0 \\
f^{\prime}(x)= & 30 x^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) } \quad f(x)=x^{2}+3 x+5 \\
& f(x+h)=(x+h)^{2}+3(x+h)+5 \\
& f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right] \\
& f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{\left.x^{2}+2 x h+h^{2}+3 x+3 h+f-x^{h}-3 x-8\right]}{h}\right] \\
& f^{\prime}(x)=\lim _{h \rightarrow 0}[2 x+h+3] \\
& f^{\prime}(x)=2 x+0+3 \\
& f^{\prime}(x)=2 x+3
\end{aligned}
$$

