Iteration to Solve Equations

$$
x^{7}-5 x-3=0
$$

Show this has a solution between $x=2$ and $x=3$

$$
\begin{array}{ll}
x=2 & 2^{3}-5(2)-3=8-10-3=-5 \\
x=3 & 3^{3}-5(3)-3=27-15-3=+9
\end{array}
$$

sign change on continuous function so $x^{3}-5 x-3=0$ has solution between $x=2$ and $x=3$

Show $x^{3}-5 x-3=0$ can be rearranged to gave $\quad x=\sqrt[3]{5 x+3}$

$$
\begin{align*}
& x^{3}-5 x-3=0 \\
& x^{3}=5 x+3 \\
& x=\sqrt[3]{5 x+3} \tag{1}
\end{align*}
$$

Starting with $x_{0}=2$
use 3 iterationsof $x_{n+1}=\sqrt[3]{5 x_{n}+3}$ to estimate the solution

$$
\begin{aligned}
x_{1} & =\sqrt[3]{5(2)+3}=2.351 \\
x_{2} & =\sqrt[3]{5(2.351)+3}=2.453 \\
x_{3} & =\sqrt[3]{5(2.453)+3}=2.481 \\
x & =2.481
\end{aligned}
$$

$E \times 2$

$$
x^{3}-x^{2}-1=0
$$

Show this equ has a root between $x=1$ and $x=2$

$$
\begin{array}{ll}
x=1 & 1^{3}-1^{2}-1=-1 \\
x=2 & 2^{3}-2^{2}-1=+3
\end{array}
$$

sign change for continous function so roof between $x=1$ and $x=2$

Use $\quad x_{n+1}=\sqrt[3]{x_{n}^{2}+1}$ 4 times
to estimate the root Start with $x_{0}=1$

$$
\begin{gathered}
x_{1}=\sqrt[3]{1^{2}+1}=1.2599 \\
x_{2}=\sqrt[3]{1.2599^{2}+1}=1.3728 \\
x_{3}=\sqrt[3]{1.3728^{2}+1}=1.4275 \\
x_{4}=\sqrt[3]{1.4235^{2}+1}=1.4465 \\
x=1.4465
\end{gathered}
$$

