Proof
It is suggested that to square an integer and a half you multiply the integer by the next integer and add $\frac{1}{4}$.

Proof $\left(n+\frac{1}{2}\right)^{2}=n^{2}+\frac{1}{2} n+\frac{1}{2} n+\frac{1}{4}$

$$
\begin{aligned}
& =n^{2}+n+\frac{1}{4} \\
& =n(n+1)+\frac{1}{4}
\end{aligned}
$$

Identities

$$
(n+1)^{2} \equiv n^{2}+2 n+1
$$

Ese for all values of n

Proof Exercise TE

1) Proof by exhaustion

$$
1 \leq n \leq 6 \quad m=n+2 \text { is not divisible by } 10
$$

$$
\left.\begin{array}{ll}
n=1 & m=3 \\
n=2 & m=4 \\
n=3 & m=5 \\
n=4 & m=6 \\
n=5 & m=7 \\
n=6 & n=8
\end{array}\right\} \text { not devices } 6 \text { b } 10
$$

5) a) $n^{4}-n$ is divisible by 4

Counter example $n=2$

$$
2^{4}-2=14 \text { not dinsibl by } 4
$$

b) Perfect squire have an ald number of factors eg q has $1,3,9$
c) $2 n^{2}-6 n+1>0$ for all n

$$
n=1 \quad 2(1)^{2}-6(1)+1=-3
$$

d) $2 n^{2}-2 n-4$ is multiple of 3

$$
n=3 \quad 2(3)^{2}-2(3)-4=8
$$

not a multise of 3α

