Leave blank

5. The circle C has equation

$$x^2 + y^2 - 20x - 24y + 195 = 0$$

The centre of C is at the point M.

- (a) Find
 - (i) the coordinates of the point M,
 - (ii) the radius of the circle C.

(5)

N is the point with coordinates (25, 32).

(b) Find the length of the line MN.

(2)

The tangent to C at a point P on the circle passes through point N.

(c) Find the length of the line NP.

(2)

Mark Scheme	at	end	of	Docur	nent
-------------	----	-----	----	-------	------

		_
		-
		-
		_
		-
		-
		_
		_
		-
		-
		_
		_
		-
		-
		_
		_
		-
		-
		_
		_
		_

5.		<u> </u>			
(a)					
(i)	The centre is at (10, 12)	B1: $x = 10$	B1 B1		
	The centre is at (10, 12)	B1: <i>y</i> = 12	BI BI		
(ii)	Uses $(x-10)^2 + (y-12)^2 =$	M1			
	Completes the square for both x				
	$(x \pm "10")^2 \pm a$ and $(y \pm "12")^2 \pm b$ and $+195 = 0, (a, b \neq 0)$				
	Allow errors in obtaining their				
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for <i>r</i> including the square root and can implied by a correct value for <i>r</i>	A1		
	r = 7	Not $r = \pm 7$ unless -7 is rejected	A1		
				(5)	
	Compares the given equation with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write	B1: $x = 10$	B1B1		
(a) Way 2	down centre $(-g, -f)$ i.e. $(10, 12)$	B1: $y = 12$			
	Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$		M1		
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for <i>r</i>	A1		
	r = 7		A1		
				(5)	
(b)	$MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$	Correct use of Pythagoras	M1		
	$MN\left(=\sqrt{625}\right)=25$		A1		
				(2)	
(c)	$NP = \sqrt{("25"^2 - "7"^2)}$	$NP = \sqrt{(MN^2 - r^2)}$	M1		
	$NP\left(=\sqrt{576}\right)=24$		A1		
				(2)	
(c) Way 2	$\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25" \sin(NR)$	MP) Correct strategy for finding NP	M1		
	NP = 24		A1		
				(2)	
				[9]	