Factor Theorem (On Syllabus)
Remainder Theorem (No longer on syllabus)
Suppose $f(x)=g(x)(x-a)+r$

Example $\quad f(x)=x^{3}+2 x^{2}-3 x+4$

$$
\begin{array}{r}
\frac{x^{2}+7 x+32}{x^{3}+2 x^{2}-3 x+4} \\
\frac{x^{3}-5 x^{2}}{+7 x^{2}-3 x} \\
+7 x^{2}-35 x \\
+32 x+4 \\
\\
\frac{+32 x-160}{+164}
\end{array}
$$

$$
\begin{aligned}
& f(x)=\left(x^{2}+7 x+32\right)(x-5)+164 \\
& f(x)=g(x)(x-a)+r \\
& f(a)=g(a)(a-a)+r \\
& f(a)=r
\end{aligned}
$$

The remainder when $f(x)$ is divided by $(x-a)$ is simply $f(a)$

$$
\text { es } \quad f(5)=5^{3}+2(5)^{2}-3(5)+4
$$

$$
\begin{aligned}
& =125+50-15+4 \\
& =164
\end{aligned}
$$

Formally,
The remainder when a polynomial $f(x)$ is diviled by a linear factor $(x-a)$ is given by f (a)

Factor Theorem
$(x-a)$ is a factor of $f(x)$
if and only if $f(a)=0$

Example $\quad f(x)=x^{3}-6 x^{2}+11 x-6$
Factorise this function

$$
f(1)=1^{3}-6(1)^{2}+11(1)-6=0
$$

$\therefore(x-1)$ is a factor

$$
f(2)=2^{3}-6(2)^{2}+11(2)-6=0
$$

$(x-2)$ is a factor

$$
f(x)=(x-2)(x-1)(x-3)
$$

Check $f(3)=3^{3}-6(3)^{2}+11(3)-6=0$

Ext Solve $x^{3}-5 x^{2}-2 x+24=0$

$$
\begin{aligned}
f(1) & =1-5-2+24 \neq 0 \\
f(2) & =2^{3}-5(2)^{2}-2(2)+24=8 \\
f(3) & =3^{3}-5(3)^{2}-2(3)+24 \\
& =27-45-6+24=0
\end{aligned}
$$

\therefore by factor theorem $(x-3)$ is a factor

$$
\begin{gathered}
x-2 x-8 \\
x-3 \begin{array}{r}
x^{2}-2 x \\
x^{3}-5 x^{2}-2 x+24 \\
\frac{x^{3}}{}-3 x^{2} \\
\frac{-2 x^{2}}{}-2 x \\
-8 x \\
-8 x+24
\end{array} \\
\begin{array}{r}
(x-3)\left(x^{2}-2 x-8\right)=0 \\
(x-3)(x-4)(x+2)=0 \\
x=3, x=4, x=-2
\end{array}
\end{gathered}
$$

Ex $\quad \rho(x)=x^{3}-6 x^{2}+9 x+k$
has a factor $x-4$
i) Find k

By factor theorem $f(4)=0$

$$
\begin{gathered}
4^{3}-6(4)^{2}+9(4)+k=0 \\
64-96+36+k=0 \\
k=-4 \\
P(x)=x^{3}-6 x^{2}+9 x-4
\end{gathered}
$$

ii) Fins other factors

$$
\begin{aligned}
& P(1)=1^{3}-6(1)^{2}+9(1)-4=0 \\
& P(x)=(x-1)(x-1)(x-4)
\end{aligned}
$$

iii)

Classwork and Homework
Exercise Tc Even Numbers

