Factor Theorem (On Syllebus)

Renainder Theorem (No longer on syllebus)

Suppose f(x) = g(x)(x-a) + rExample $f(x) = x^3 + 2x^2 - 3x + 4$ $x^2 + 7x + 32$ x - 5 x - 5 x - 5 x - 5 x - 7 x - 3 x - 7 x - 3 x - 4 x - 3 x - 4 x - 3 x - 4 x - 3 x - 4 x - 3 x - 4 x - 3 x - 4 x - 3 x - 4 x - 3 x - 4 x - 3 x - 4

 $f(x) = (x^{2} + 7x + 32)(x - 5) + 164$ f(x) = g(x)(x - a) + r f(a) = g(a)(a - a) + r f(a) = r

The remainder when f(z) is divided by (x-a) is simply f(a)

 e_5 f(5) = 5³ + 2(5)² - 3(5) + 4

Formally,

The remainder when a polynomial f(x) is divided by a linear factor (x-a) is given by f(a)

Factor Theorem

$$(x-a)$$
 is a factor of $f(x)$
if and only if $f(a) = 0$

Example
$$f(x) = x^3 - 6x^2 + 11x - 6$$

Factorise this function

$$f(i) = 1^3 - C(i)^2 + 11(i) - 6 = 0$$

 $f(i) = 1^3 - C(i)^2 + 11(i) - 6 = 0$

$$f(z) = 2^3 - 6(z)^2 + 11(z) - 6 = 0$$

 $(x-z)$ is a factor

$$f(x) = (x-z)(x-z)(x-z)$$

(heck
$$f(3) = 3^3 - 6(3)^2 + 11(3) - 6 = 0$$

Solve
$$x^3 - 5x^2 - 2x + 24 = 0$$

 $f(i) = 1 - 5 - 2 + 24 \neq 0$
 $f(2) = 2^3 - 5(2)^2 - 2(2) + 24 = 8$
 $f(3) = 3^3 - 5(3)^2 - 2(3) + 24$
 $= 27 - 45 - 6 + 24 = 0$
 $\therefore 5y \text{ factor theorem } (x - 3) \text{ is a factor } x^2 - 2x - 8$
 $x - 3 / x^3 - 5x^2 - 2x + 24$
 $x^3 - 3x^2$
 $-2x^2 + 6x$
 $-8x + 24$
 $-8x + 24$
 $(x - 3)(x^2 - 2x - 8) = 0$
 $(x - 3)(x - 4)(x + 2) = 0$
 $x = 3$, $x = 4$, $x = -2$

Ex3 $\rho(x) = x^3 - 6x^2 + 9x + 4$ has a factor x - 4

i) Find K

Exz

By factor theorem
$$f(4) = 0$$

$$4^{3} - 6(4)^{2} + 9(4) + k = 0$$

$$64 - 96 + 36 + k = 0$$

$$k = -4$$

$$P(x) = x^{3} - 6x^{2} + 9x - 4$$

$$P(1) = 1^3 - 6(1)^2 + 9(1) - 4 = 0$$

$$P(x) = (x - 1)(x - 1)(x - 4)$$

(ii)

Classwork and Homework

Exercise 7C Even Numbers