Binomial and Hypothesis Testing Homework

8 Mark is playing solitaire on his computer. The probability that he wins a game is 0.2 , independently of all other games that he plays.
(i) Find the expected number of wins in 12 games.
(ii) Find the probability that
(A) he wins exactly 2 out of the next 12 games that he plays,
(B) he wins at least 2 out of the next 12 games that he plays.
(iii) Mark's friend Ali also plays solitaire. Ali claims that he is better at winning games than Mark. In a random sample of 20 games played by Ali, he wins 7 of them. Write down suitable hypotheses for a test at the 5% level to investigate whether Ali is correct. Give a reason for your choice of alternative hypothesis. Carry out the test.

8 The Department of Health 'eat five a day' advice recommends that people should eat at least five portions of fruit and vegetables per day. In a particular school, 20% of pupils eat at least five a day.
(i) 15 children are selected at random.
(A) Find the probability that exactly 3 of them eat at least five a day.
(B) Find the probability that at least 3 of them eat at least five a day.
(C) Find the expected number who eat at least five a day.

A programme is introduced to encourage children to eat more portions of fruit and vegetables per day. At the end of this programme, the diets of a random sample of 15 children are analysed. A hypothesis test is carried out to examine whether the proportion of children in the school who eat at least five a day has increased.
(ii) (A) Write down suitable null and alternative hypotheses for the test.
(B) Give a reason for your choice of the alternative hypothesis.
(iii) Find the critical region for the test at the 10% significance level, showing all of your calculations. Hence complete the test, given that 7 of the 15 children eat at least five a day.

6 A manufacturer produces tiles. On average 10% of the tiles produced are faulty. Faulty tiles occur randomly and independently.

A random sample of 18 tiles is selected.
(i) (A) Find the probability that there are exactly 2 faulty tiles in the sample.
(B) Find the probability that there are more than 2 faulty tiles in the sample.
(C) Find the expected number of faulty tiles in the sample.

A cheaper way of producing the tiles is introduced. The manufacturer believes that this may increase the proportion of faulty tiles. In order to check this, a random sample of 18 tiles produced using the cheaper process is selected and a hypothesis test is carried out.
(ii) (A) Write down suitable null and alternative hypotheses for the test.
(B) Explain why the alternative hypothesis has the form that it does.
(iii) Find the critical region for the test at the 5\% level, showing all of your calculations.
(iv) In fact there are 4 faulty tiles in the sample. Complete the test, stating your conclusion clearly.
(iii) Mark's friend Ali also plays solitaire. Ali claims that he is better at winning games than Mark. In a random sample of 20 games played by Ali, he wins 7 of them. Write down suitable hypotheses for a test at the 5% level to investigate whether Ali is correct. Give a reason for your choice of alternative hypothesis. Carry out the test.

$$
\begin{aligned}
& H_{0}: \rho=0.2 \\
& p \text { is the prob he wins } \\
& H_{1}: \rho>0.2 \text { a randomly chosen game } \\
& H_{1} \text { chosen as } P>0.2 \text { because Alithinks he } \\
& \text { has a higher probability } \quad X \sim B(20,0.2) \\
& P(x \geqslant 7)=1-P(x \leqslant 6) \\
& 1-0.9133
\end{aligned}
$$

There is not sufficient evidence to
support the view Ali has a greater chance of winning

A programme is introduced to encourage children to eat more portions of fruit and vegetables per day. At the end of this programme, the diets of a random sample of 15 children are analysed. A hypothesis test is carried out to examine whether the proportion of children in the school who eat at least five a day has increased.
(ii) (A) Write down suitable null and alternative hypotheses for the test.
(B) Give a reason for your choice of the alternative hypothesis.
(iii) Find the critical region for the test at the 10% significance level, showing all of your calculations. Hence complete the test, given that 7 of the 15 children eat at least five a day.
ii (A)

$$
x \sim B(15,0.2)
$$

$$
H_{0}: \rho=0.2
$$

$$
H_{1}: P>0.2
$$

P is prob a randomly chosen child ants 5 a day
H. chon as $p>0.2$ because look ing for inerece after encouragement.

$$
\begin{aligned}
P(x \leq 4)=0.8357 & \quad P(x \geqslant 5)=1-P(x \leq 4) \\
& =1-0.8357=0.1643>10 \% \\
P(x \leq 5)=0.9389 \quad & \\
& \\
\text { So coital resin } & =\{6,76)=1-P(x \leq 5) \\
& =1-0.9389=0.0611<10 \%
\end{aligned}
$$

There is sufficied evidence to support the view the proportion of childe eating 5 a bay hes in e reaped

A cheaper way of producing the tiles is introduced. The manufacturer believes that this may increase the proportion of faulty tiles. In order to check this, a random sample of 18 tiles produced using the cheaper process is selected and a hypothesis test is carried out.
(ii) (A) Write down suitable null and alternative hypotheses for the test.
(B) Explain why the alternative hypothesis has the form that it does.
(iii) Find the critical region for the test at the 5\% level, showing all of your calculations.
(iv) In fact there are 4 faulty tiles in the sample. Complete the test, stating your conclusion clearly.

$$
x \sim B(18,0.1)
$$

$H_{0}: p=0.1$ wee p is prob a
$H_{1}: p>0.1$ random tile is faulty
$H_{i}: P>0.1$ since mure fall ty tiles suspected.

$$
\begin{aligned}
& P(x \leq 3)=0.9018 \\
& P(x \leq 4)=0.9718
\end{aligned}
$$

$$
\begin{aligned}
P(x \geqslant 4) & =1-P(x \leqslant 3) \\
& =1-0.9018 \\
& =0.0982>56
\end{aligned}
$$

$$
\begin{aligned}
P(x \geqslant 5) & =1-P(x \leq 4) \\
& =1-0.4718 \\
& =0.0282<52
\end{aligned}
$$

$$
C_{R}=\{5,6,7,8,9,10,11,12,13,14,15,16,17,8\}
$$

4 not in C.R. Accept H. $\rho=0.1$

There is not sufficinat cudene to suggect the proportion of faulty tiby has incremed,

