Non-Linear Simultaneous Equations Exam Questions

Questions

Q1.

Solve the simultaneous equations

$$x + y = 2$$
$$4y^2 - x^2 = 11$$

(7)

(Total 7 marks)

Q2.

Solve the simultaneous equations

$$y - 3x + 2 = 0$$

$$y^2 - x - 6x^2 = 0$$

(7)

(Total 7 marks)

Q3.

Given the simultaneous equations

$$2x + y = 1$$

$$x^2 - 4ky + 5k = 0$$

where *k* is a non zero constant,

(a) show that

$$x^2 + 8kx + k = 0$$

(2)

Given that $x^2 + 8kx + k = 0$ has equal roots,

(b) find the value of k.

(3)

(c) For this value of k, find the solution of the simultaneous equations.

Q4.

Figure 2

The line y = x + 2 meets the curve $x^2 + 4y^2 - 2x = 35$ at the points A and B as shown in Figure 2.

(a) Find the coordinates of A and the coordinates of B.

(6)

(b) Find the distance AB in the form $r\sqrt{2}$ where r is a rational number.

(3)

(Total 9 marks)

Q5.

Solve the simultaneous equations

$$y - 2x - 4 = 0$$

 $4x^2 + y^2 + 20x = 0$

(7)

(Total for question = 7 marks)

Q6.

(a) By eliminating *y* from the equations

$$y = x - 4$$

$$2x^2 - xy = 8,$$

show that

$$x^2 + 4x - 8 = 0$$

(2)

(b) Hence, or otherwise, solve the simultaneous equations

$$y = x - 4$$
,

$$2x^2 - xy = 8,$$

giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers.

(5)

(Total 7 marks)

Q7.

Solve the simultaneous equations

$$y + 4x + 1 = 0$$

$$y^2 + 5x^2 + 2x = 0$$

(6)

(Total for question = 6 marks)

Q8.

The straight line L_1 passes through the points (-1, 3) and (11, 12).

(a) Find an equation for L_1 in the form $ax + by + c = 0$,
where a, b and c are integers.
(4)
The line L_2 has equation $3y + 4x - 30 = 0$.
(b) Find the coordinates of the point of intersection of L_1 and L_2 .
(3)
(Total 7 marks)
Q9.
The curve C has equation $y = \frac{3}{x}$ and the line I has equation $y = 2x + 5$.
(a) Sketch the graphs of ${\it C}$ and ${\it I}$, indicating clearly the coordinates of any intersections with the axes.
(3)
(b) Find the coordinates of the points of intersection of ${\it C}$ and ${\it I}$.
(6)
(Total 9 marks)
Q10.
The straight line with equation $y = 3x - 7$ does not cross or touch the curve with equation $y = 2px^2 - 6px + 4p$, where p is a constant.
(a) Show that $4p^2 - 20p + 9 < 0$
(4)
(b) Hence find the set of possible values of p .

(4)

Q11.

- (a) On separate axes sketch the graphs of
- (i) y = -3x + c, where c is a positive constant,
- (ii) $y = \frac{1}{x} + 5$

On each sketch show the coordinates of any point at which the graph crosses the *y*-axis and the equation of any horizontal asymptote.

(4)

Given that y = -3x + c, where c is a positive constant, meets the curve $y = \frac{1}{x} + 5$ at two distinct points,

(b) show that $(5 - c)^2 > 2$

(3)

(c) Hence find the range of possible values for *c*.

(4)

(Total for question = 11 marks)

Q12.

Figure 1

Figure 1 shows a sketch of the curve with equation $y = \frac{2}{x}$, $x \neq 0$

The curve C has equation $y = \frac{2}{x} - 5$, $x \ne 0$, and the line I has equation y = 4x + 2

(a) Sketch and clearly label the graphs of C and I on a single diagram.

On your diagram, show clearly the coordinates of the points where C and I cross the coordinate axes.

(5)

(b) Write down the equations of the asymptotes of the curve C.

(2)

(c) Find the coordinates of the points of intersection of $y = \frac{2}{x} - 5$ and y = 4x + 2

(5)

(Total 12 marks)

Solve the simultaneous equations

$$y - 3x + 2 = 0$$
 $y^2 - x - 6x^2 = 0$

From 1

(Total 7 marks)

(7)

$$(3x-2)^{2}-xc-6x^{2}=0$$

$$9x^{2}+4-12x-x-6x^{2}=0$$

$$3x^{2}-13x+4=0$$

$$3x^{2}-x-12x+4=0$$

$$x(3x-1)-4(3x-1)=0$$

(x-4)(3x-1) = 0

I,thr
$$x = 4$$
 or $3x = 4$

$$y = 3(4) - 2$$
 $y = 10$

$$3c = \frac{1}{3}$$
 $3c = \frac{1}{3}$
 $3c = \frac{1}{3}$

$$\begin{cases} x = 4 \\ y = 10 \end{cases}$$

Figure 2

The line y = x + 2 meets the curve $x^2 + 4y^2 - 2x = 35$ at the points A and B as shown in Figure 2

(6)

- (a) Find the coordinates of A and the coordinates of B.
- (b) Find the distance AB in the form $r\sqrt{2}$ where r is a rational number.

$$y = x + 2 \qquad (3)$$

$$x^{2} + 4y^{2} - 2x = 35 \qquad (2)$$

$$x^{3} + 4(x + 2)^{2} - 2x = 35$$

$$x^{2} + 4(x + 2)^{2} - 2x - 35 = 0$$

$$x^{2} + 4x^{2} + 16 + 16x - 2x - 35 = 0$$

$$x^{2} + 4x^{2} + 16 + 16x - 2x - 35 = 0$$

$$5x^{2} + 14x - 19 = 0$$

$$x = (or x = -\frac{19}{5})$$

$$y = 1 + 2 \qquad y = -\frac{19}{5} + 2$$

$$y = 3 \qquad x = -\frac{9}{5}$$

$$x = -\frac{9}{5}$$

$$x = -\frac{9}{5}$$

$$x = -\frac{9}{5}$$

$$A(1,3)$$
 $B(-\frac{19}{5},-\frac{9}{5})$

$$|AB| = \sqrt{(1 - (\frac{9}{5})^2 + (3 - (\frac{9}{5})^2)^2}$$

$$= \sqrt{(\frac{24}{5})^2 + (\frac{24}{5})^2}$$

$$= \sqrt{2(\frac{24}{5})^2}$$

$$\frac{24\sqrt{2}}{5}$$

Q6.

(a) By eliminating y from the equations

$$y = x - 4$$

$$2x^2 - xy = 8,$$

show that

$$x^2 + 4x - 8 = 0$$

(2)

(b) Hence, or otherwise, solve the simultaneous equations

$$y = x - 4,$$
$$2x^2 - xy = 8,$$

giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers.

(5)

a) Sub far y in
$$②$$

$$2x^{2} - x(x-4) = 8$$

$$2x^{2} - x^{2} + 4x = 8$$

$$x^2 + 4x - 8 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = -4 \pm \sqrt{4^2 - 4x / x - 8}$$

$$x = \frac{-4 \pm \sqrt{48}}{2}$$

$$x = \frac{-4 \pm \sqrt{16x3}}{2}$$

$$x = -4 \pm 4\sqrt{3}$$

$$x = -2 \pm 2\sqrt{7}$$

Q1.

Solve the simultaneous equations

$$x + y = 2$$

$$4y^2 - x^2 = 11$$

(7)

From 1

(Total 7 marks)

$$4(2-x)^{2} - x^{2} = 11$$

$$4(4+x^{2}-4x) - x^{2} - 11 = 0$$

$$16 + 4x^{2} - 16x - x^{2} - 11 = 0$$

$$3x^{2} - 16x + 5 = 0$$

$$(3x - 1)(x - 5) = 0$$
Either
$$3x - 1 = 0 \quad \text{or} \quad x - 5 = 0$$

$$3x = 1$$

$$x = \frac{1}{3}$$

$$y = 2 - \frac{1}{3}$$

$$y = 2 - \frac{1}{3}$$

$$y = -3$$

$$\begin{cases} x = \frac{1}{3} \\ y = \frac{\pi}{3} \end{cases}$$

$$\begin{cases} x = 5 \\ y = -3 \end{cases}$$

Q3.

Given the simultaneous equations

$$2x + y = 1$$

$$x^2 - 4ky + 5k = 0$$

where k is a non zero constant,

(a) show that

$$x^2 + 8kx + k = 0$$

(2)

Given that $x^2 + 8kx + k = 0$ has equal roots,

(b) find the value of k.

(3)

(c) For this value of k, find the solution of the simultaneous equations.

4) From (1)
$$y = 1 - 2x$$

Subfory $x^2 - 4k(1 - 2x) + 5k = 0$
 $x^2 - 4k + 8kx + 5k = 0$
 $x^2 + 8kx + k = 0$

b) Equal roots
$$\Rightarrow 5^2 - 4ac = 0$$

 $\Rightarrow (8t)^2 - 4 \times 1 \times t = 0$
 $64k^2 - 4k = 0$
 $4k(16k - 1) = 0$
 $k \neq 0$ $\therefore 16k - 1 = 0$
 $16k = 1$
 $k = \frac{1}{16}$

$$2^{2} + \frac{8}{16}x + \frac{1}{16} = 0$$

$$16x^{2} + 8x + 1 = 0$$

$$(4x + 1)^{2} = 0$$

$$4x + 1 = 0$$

$$4x = -1$$

$$x = -\frac{1}{4}$$

$$\begin{cases} x = -\frac{1}{4} \\ y = \frac{3}{2} \end{cases}$$

$$y = 1 + \frac{2}{4}$$

$$y = \frac{3}{2}$$

Solve the simultaneous equations

$$y - 2x - 4 = 0$$
 (2)
 $4x^2 + y^2 + 20x = 0$ (2)

(7)

(Total for question = 7 marks)

Sub for y in (2)

$$4x^{2} + (2x+4)^{2} + 20x = 0$$

$$4x^{2} + 4x^{2} + 16 + 16x + 28x = 0$$

$$8x^{2} + 36x + 16 = 0$$

$$2x^{2} + 9x + 4 = 0$$

$$(2x + 1)(x + 4) = 0$$

$$2x+1=0 \quad \text{or} \quad x+4=0$$

$$2x=-1$$

$$x=-\frac{1}{2}$$

$$y = 2(-\frac{1}{2}) + 4$$
 $y = 2(-4) + 4$ $y = 3$ $y = -4$

$$\begin{cases} x = -\varphi \\ y = -\varphi \end{cases}$$