Iteration

3 a Use the 'Babylonian' iterative formula

$$x_{n+1} = \frac{x_n}{2} + \frac{2}{2x_n}$$

to find a fraction approximation to $\sqrt{2}$. Use three iterations starting with the estimate $x_1 = 1$.

b What is the result of squaring your answer to a?

Did you know...

Some historians believe that 4000 years ago Babylonian mathematicians used iterative formula to find the square roots of numbers.

$$\mathcal{L}_{n+1} = \frac{x_n}{2} + \frac{1}{x}$$

$$x, = 1$$

$$x_2 = \frac{1}{2} + \frac{1}{1} = 1.5$$

$$x_3 = \frac{1-5}{2} + \frac{1}{1-5} = 1-4.17$$

$$\chi_4 = \frac{1.417}{2} + \frac{1}{1.417} = 1.4142$$

$$(1.4(42)^2 = (.99996)$$

So it is a very good approximation to $\sqrt{2}$

4 a Use the 'Babylonian' iterative formula

$$x_{n+1} = \frac{x_n}{2} + \frac{3}{2x_n}$$

to find a fraction approximation to $\sqrt{3}$. Use two iterations starting with the estimate $x_1 = 2$.

b What happens if you use the much simpler formula $x_{n+1} = \frac{3}{x_n}$?

$$\chi_{n+1} = \frac{\chi_n}{2} + \frac{3}{2\chi_n}$$

$$\infty_1 = 2$$

$$x_2 = \frac{2}{2} + \frac{3}{(2x^2)} = 1.75$$

$$\mathcal{X}_3 = \frac{1.75}{2} + \frac{3}{(2 \times 1.75)} = 1.732$$

$$x_4 = \frac{1-132}{2} + \frac{3}{(2 \times 1-732)} = 1.732$$

$$\sqrt{3} \approx 1.732$$

$$5) \qquad x_{n+1} = \frac{3}{2c_n}$$

$$x_1 = 2$$
 $x_2 = \frac{3}{2} = 1.5$
 $x_3 = \frac{3}{1.5} = 2$

Formula would give results that do not converge to 13 but oscillate between 1.5 and 2

5 In 2010, a survey of the birds on an island counted approximately 200 kittiwakes.

A conservationist used the logistic equation

$$P_{n+1} = P_n(1.4 - 0.001P_n)$$

to predict the expected population, P_n , n years later.

- a What did the equation predict for the size of the colony of kittiwakes each year from 2011 to 2015?
- b Describe in your own words how the size of the colony was expected to change.
- Assuming that the size of the colony will stabilise at a roughly constant value, find this equilibrium size.

$$2012 \quad 240(1.4 - 0.001 \times 240)$$

$$= 278.4 = 279$$

$$279(1.4 - 0.00(\times 279)$$

$$= 3(2.759 = 313)$$

$$2014 \qquad 313(1.4 - 0.001 \times 313)$$
$$= 340.231 = 340$$

$$2015 \qquad 340(1.4 - 0.001 \times 340)$$
$$= 360.4 = 360$$

Size of colony in 2015 predicted to be 360

- b) Population is increasing but rate of increase gradually slows down.
- c) Population will stabilise when Pn is being hultiplied by 1 so (1.4 0.001Pn) = 1

1.4 = 1 + 0.001 Pn0.4 = 0.001 Pn

 $\frac{0.4}{0.001} = P_n$

Pn = 400

Stabilises at around 400